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1 Introduction

This document describes the crystal plasticity model (see Sec. 2, with more theoretical details
available in [1]), numerical implementation (see Sec. 3, with more technical details available in [2])
and derivation of material tangent stiffness (see Sec. 5), which has all been implemented in the
fortran subroutine Beaver/src/main/hypela2.f for Marc/Mentat. Necessary definitions for
notations and operations, and a few useful tensorial relations are summarized in the Appendix. In
order to get familiar with the solution procedure and quickly test new features, an implementation
based on matlab is provided in Beaver/examples/Matlab_CP/main.m, although this version is
already slightly outdated.

2 Crystal plasticity model

2.1 Kinematics

Based on the microstructural elasto-(visco)plastic description of crystallographic slip, the deform-
ation gradient tensor is multiplicatively split into the elastic and plastic parts (marked by the
subscripts “e” and “p”, respectively), reading

F = F e · F p. (1)

Due to the rate-dependency, the velocity gradient tensor L = Ḟ · F−1 is introduced and
decomposed as

L = Le + F e ·Lp · F−1
e , (2)

with the elastic and plastic parts separately defined by Le = Ḟ e · F−1
e and Lp = Ḟ p · F−1

p .
Moreover, Lp for the plastic deformation by crystallographic slip is correlated to each initial

slip direction ~sα0 and slip plane normal ~nα0 , α = 1, 2, 3, . . . , Ns, reading

Lp =

Ns∑
α=1

γ̇αP α
0 , (3)

with the (non-symmetric) Schmid tensor in the reference configuration defined by P α
0 = ~sα0~n

α
0 .

Here Ns denotes the total number of slip systems and γ̇α the slip rate of slip system α.

2.2 Constitutive relations

With the constitutive relations, the material behaviour of a crystal is described, which consists of
an elastic and a plastic part.

2.2.1 Elasticity

It is assumed that the elastic response of a crystal is relatively small, such that the elastic part of
the response may be described by a linear relation as

Se = 4C : Ee, (4)

where 4C denotes the 4th-order elasticity tensor,

Se = F p · S · FT
p (5)

is the (symmetric) elastic 2nd Piola-Kirchhoff stress tensor. Furthermore,

Ee =
1

2
(Ce − I) (6)

is the (symmetric) elastic Green-Lagrange strain tensor with

Ce = FT
e · F e (7)

the (symmetric) elastic right Cauchy-Green deformation tensor (more details can be found in [3, 4]).
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2.2.2 Plasticity

The plastic deformation is governed by the resolved shear stress on each slip system

τα = Se ·Ce : P α
0 . (8)

The visco-plastic relation between shear rate and resolved shear stress on each slip system is
described by a power law, reading

γ̇α = γ̇0

(
|τα|
sα

) 1
m

sign(τα), (9)

where sα is the shear resistance, γ̇0 denotes the reference slip rate, and m the strain-rate sensitivity.
The latter two are (fixed) material parameters. In order to incorporate hardening in the model,
an evolution equation for sα is defined by

ṡα =

Ns∑
β=1

hαβ |γ̇β |. (10)

Notice that the slip resistance sα may increase due to hardening of the slip system α itself (self
hardening), as well as due to hardening by other systems β (latent hardening). Many different
choices can be made for the hardening modulus hαβ , including

hαβ = h0

(
1− sα

s∞

)a (
q + (1− q)δαβ

)
. (11)

Here h0 denotes the reference hardening modulus, s∞ the extreme shear resistance, q the latent-
hardening ratio, a the shape factor. These are (fixed) material parameters as well. Furthermore,
δαβ denotes the Kronecker delta. In Beaver, also other slip resistance evolution equations can be
chosen.

3 Numerical implementation

3.1 Problem definition

The total deformation gradient F is given and known at the beginning of each new time step.
Unless stated differently, all quantities are assumed to be defined at the next (unknown) time step
tn+1 (so e.g. F ≡ F (tn+1)). All other quantities are updated according the equations above.
One may select the assembled slip rate column γ̇˜ as the direct variable to solve by starting from
eqs. (3), (1), (4), (8) to (9) and thus a closed-loop chain relation is established, reading

γ̇˜ → Lp = Lp(γ̇˜)→ F p = F p(γ̇˜)→ F e = F e(γ̇˜)

→ Ce = Ce(∆γ˜ )→ Se = Se(γ̇˜)→ τ˜ = τ˜(γ̇˜)→ γ̇˜, (12)

which yields a straightforward nonlinear equation r˜(γ̇˜) = 0˜ to be solved, where r denotes the
residual and should vanish at the balance state.

Due to the discrete time increment in practice, F p cannot be calculated directly from the slip
rate γ̇˜. To solve this issue, Lp is often assumed to be constant during an increment from time tn
to tn+1 such that

F p = F̃ pinc
· F p(tn), (13)

with the increment factor given by

F̃ pinc
= (det(F pinc

))
−1/3

F pinc
= J

− 1
3

pincF pinc
, (14a)

F pinc
= exp

(∫ tn+1

tn

Lpdt

)
= exp(M) ≈

(
I − 1

2
M

)−1

·
(
I +

1

2
M

)
, (14b)

3



3.2 Residual

where an alternative variable to Lp, the deformation gradient increment tensor is defined as

M = ∆tLp =

Ns∑
α=1

∆γαP α
0 . (15)

Here Jpinc is the determinant for correcting the volume deviation from unity and the Padé approx-
imation is employed in eq. (14b) for a small ∆tLp.

Clearly, the slip increment of each slip system ∆γα is introduced as an extra variable above.
In order to approximately correlate ∆γα to γ̇α, many differential formats are possible and a
trapezoidal format is currently selected, reading

∆γα =
∆t

2
(γ̇α(tn) + γ̇α) . (16)

Among various simulations with different imposed strain rates, the order of magnitude of the slip
rate γ̇α may vary a lot. To circumvent the numerical issues related to this observation (complicated
convergence tolerances and numerical accurateness), the choice has been made to take ∆γ˜ as a
direct variable to solve. At present, a new closed-loop chain relation is formulated, by starting
from eqs. (15), (13), (1), (4), (8), (9) to (16), reading

∆γ˜ →M = M(∆γ˜ )→ F p = F p(∆γ˜ )→ F e = F e(∆γ˜ )→ Ce = Ce(∆γ˜ )

→ Se = Se(∆γ˜ )→ τ˜ = τ˜(∆γ˜ )→ γ̇˜ = γ̇˜(∆γ˜ )→ ∆γ˜ , (17)

which implies a nonlinear equation r˜(∆γ˜ ) = 0˜ to be solved. Once ∆γ˜ is computed, other quant-
ities can be updated accordingly as well. The latter solution procedure is implemented in the
Marc/Mentat subroutines.

3.2 Residual

Column r˜ consists of components rα. Based on the choice of the solution procedure (eq. (17)), the
residual r˜ is defined by substituting eq. (16) in eq. (9) as

rα = ∆γα − ∆t

2

(
γ̇α(tn) + γ̇0

(
|τα|
sα

)1/m

sign(τα)

)
. (18)

3.3 Linearization

The Newton-Raphson iteration method is adopted to solve r˜(∆γ˜ ) = 0˜, which is linearized as

r˜i +Ki(∆γ˜ i+1 −∆γ˜ i) = 0˜, (19)

at the iteration step i (omitted in the below), where the system Jacobian matrix K is defined by

K =
∂r˜
∂∆γ˜

, (20)

with the elements (K)
αβ

= ∂rα

∂∆γβ
.
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4 System Jacobian matrix

In order to get the explicit form of eq. (20), the variational form of the residual is considered,
which indicated with the symbol δ:

δrα = δ∆γα − ∆t

2
δ

(
γ̇0

(
|τα|
sα

)1/m

sign(τα)

)

= δ∆γα − bαδ
(
|τα|
sα

)
sign(τα)

= δ∆γα − bα
(

1

sα
δ|τα| − |τ

α|
(sα)2

δsα
)

sign(τα)

= δ∆γα − bα(sαδτα − ταδsα), (21)

with

bα =
∆t

2

1

(sα)2

γ̇0

m

(
|τα|
sα

)1/m−1

. (22)

Here, the relation sign(τα)|τα| = τα has been employed. Then substituting eq. (21) to (20) and
applying the chain rule imply

K = I +
∂r˜
∂τ˜

∂τ˜
∂∆γ˜

+
∂r˜
∂s˜

∂s˜
∂∆γ˜

, (23)

with

(I)αβ = δαβ (24)(
∂r˜
∂τ˜
)αβ

=
∂rα

∂τβ
= −δαβbβsβ (25)(

∂r˜
∂s˜
)αβ

=
∂rα

∂sβ
= δαβbβτβ . (26)

The elements
(
∂τ˜∂∆γ˜
)αβ

and
(
∂s˜∂∆γ˜
)αβ

are still unknown but can be determined in a straightfor-
ward manner, as will be shown in the following subsections.

4.1 Slip resistance w.r.t slip increment

Equation (10) is rewritten in the variational and incremental form, reading

δsα = δ∆sα =

Ns∑
β=1

hαβ sign(∆γβ)δ∆γβ . (27)

Equation (27) immediately implies

(
∂s˜
∂∆γ˜

)αβ
=

∂sα

∂∆γβ
= hαβsign(∆γβ). (28)
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4.2 Resolved shear stress w.r.t slip increment

4.2 Resolved shear stress w.r.t slip increment

The closed-loop chain relation given by eq. (17), can be used to split
(
∂τ˜∂∆γ˜
)αβ

as

(
∂τ˜
∂∆γ˜

)αβ
=

∂τα

∂∆γβ
=
∂τα

∂ST
e︸ ︷︷ ︸

4.2.6

:
∂Se

∂CT
e︸ ︷︷ ︸

4.2.5

:
∂Ce

∂FT
e︸ ︷︷ ︸

4.2.4

:
∂F e

∂FT
p︸ ︷︷ ︸

4.2.3

:
∂F p

∂MT︸ ︷︷ ︸
4.2.2

:
∂M

∂∆γβ︸ ︷︷ ︸
4.2.1

. (29)

Various intermediate terms will be separately derived (from right to left) using eqs. (15), (13),
(1), (4) and (8). The number indicated below each derivative in eq. (29) refers to the corresponding
section below, in which the derivative will be derived.

4.2.1 Deformation gradient increment w.r.t. slip increment

The variational form of eq. (15) can be expressed as

δM = δ

(
Ns∑
α=1

∆γαP α
0

)
=

Ns∑
α=1

P α
0 δ∆γ

α, (30)

which implies

(
∂M

∂∆γ˜
)β

=
∂M

∂∆γβ
= P β

0 . (31)

4.2.2 Plastic deformation gradient w.r.t. deformation gradient increment

The variational form of eq. (13) can be expressed as

δF p = δF̃ pinc
· F p(tn)

=
(

4IRT · FT
p (tn)

)
: 4IRT

: δF̃ pinc . (32)

Next, the variational form of eq. (14a) can be expressed as

δF̃ pinc = δ
(
J−1/3

pinc

)
F pinc + J−1/3

pinc
δF pinc

= −1

3
J−4/3

pinc
F pincδJpinc + J−1/3

pinc
δF pinc , (33)

with

δJpinc
= det(F pinc

+ δF pinc
)− Jpinc

= det
(
(I + δF pinc · F

−1
pinc

)− 1
)
Jpinc

≈ tr(δF pinc
· F−1

pinc
)Jpinc

= Jpinc
F−1

pinc
: δF pinc

, (34)

where the relations det(A ·B) = det(A)det(B), det(I + δA) ≈ 1 + tr(δA) and tr(A ·B) = A : B
(also see Appendix) have been employed. Substituting eq. (34) to (33) yields

δF̃ pinc
= −1

3
J−1/3

pinc
F pinc

F−1
pinc

: δF pinc
+ J−1/3

pinc

4I : δF pinc

= J−1/3
pinc

(
4I− 1

3
F pinc

F−1
pinc

)
: δF pinc

. (35)
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4.2 Resolved shear stress w.r.t slip increment

Furthermore, the variational form of eq. (14b) can be expressed as

δF pinc = δ

(
I − 1

2
M

)−1

·
(
I +

1

2
M

)
+

(
I − 1

2
M

)−1

· δ
(
I +

1

2
M

)
, (36)

with

δ

(
I +

1

2
M

)
=

1

2
δM , (37a)

δ

(
I − 1

2
M

)−1

=
1

2

(
I − 1

2
M

)−1

· δM ·
(
I − 1

2
M

)−1

. (37b)

Substituting eqs. (14b) and (37) to (36) gives

δF pinc =
1

2

(
I − 1

2
M

)−1

· δM ·
(
I − 1

2
M

)−1

·
(
I +

1

2
M

)
+

(
I − 1

2
M

)−1

· 1

2
δM

≈ 1

2

(
I − 1

2
M

)−1

· δM · (F pinc
+ I)

=
1

2

(
I − 1

2
M

)−1

·
(

4IRT ·
(
FT

pinc
+ I

))
: 4IRT

: δM , (38)

where the relations 4IRT
: A = AT and 4A : (B ·C) = (4A ·B) : C (also see Appendix) have been

employed. Now collecting eqs. (32), (35) and (38) implies

∂F p

∂MT
=

∂F p

∂F̃
T

pinc

:
∂F̃ pinc

∂FT
pinc

:
∂F pinc

∂MT
(39)

with

∂F p

∂F̃
T

pinc

=
(

4IRT · FT
p (tn)

)
: 4IRT

, (40a)

∂F̃ pinc

∂FT
pinc

= J−1/3
pinc

(
4I− 1

3
F pinc

F−1
pinc

)
, (40b)

∂F pinc

∂MT
=

1

2

(
I − 1

2
M

)−1

·
(

4IRT ·
(
FT

pinc
+ I

))
: 4IRT

. (40c)

4.2.3 Elastic deformation gradient w.r.t. plastic deformation gradient

The variational form of eq. (1) can be expressed as

δF e = δ(F · F−1
p )

= δF · F−1
p + F · δF−1

p

= (4IRT · F−T
p ) : δFT + F · δF−1

p

= (4IRT · F−T
p ) : 4IRT

: δF − F · F−1
p · δF p · F−1

p

= (4IRT · F−T
p ) : 4IRT

: δF − F e · (4IRT · F−T
p ) : 4IRT

: δF p, (41)

where the relations 4IRT
: A = AT, 4A : (B ·C) = (4A ·B) : C and δI = A · δA−1 + δA ·A−1 = 0

(also see Appendix) have been employed. The expression is simplified as follows

δF e = 4G : δF − F e · 4G : δF p, (42)
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4.2 Resolved shear stress w.r.t slip increment

with

4G = (4IRT · F−T
p ) : 4IRT

(43)

Since F is prescribed, equation (42) immediately implies

∂F e

∂FT
p

= −F e · 4G. (44)

4.2.4 Elastic strain w.r.t. elastic deformation gradient

The variational form of eq. (7) can be expressed as

δCe = δ(FT
e · F e)

= δFT
e · F e + FT

e · δF e

= (24IS · FT
e ) : δF e, (45)

where the relations A ·B + BT ·AT = 24IS : (A ·B) and 4A : (B ·C) = (4A ·B) : C have been
employed. This implies

∂Ce

∂FT
e

= 24IS · FT
e . (46)

4.2.5 Elastic stress w.r.t. elastic strain

The variational form of eq. (4) and eq. (6) can be expressed as

δSe =
1

2
4C : δCe, (47)

which directly implies

∂Se

∂CT
e

=
1

2
4C (48)

4.2.6 Resolved shear stress w.r.t. elastic stress

The variational form of eq. (8) can be expressed as

δτα = (δSe ·Ce + Se · δCe) : P α
0

= P α
0 : (δSe ·Ce + Se · δCe)

= P α
0 :
(

4IRT
: (CT

e · δS
T
e ) + 2Se · 4S : δSe

)
= P α

0 :
(

4IRT ·Ce + 2Se · 4S
)

: δSe, (49)
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with the 4th-order compliance tensor defined as

4S =
∂Ee

∂ST
e

=
1

2

∂Ce

∂ST
e

. (50)

Here the relations 4IRT
: A = AT and 4A : (B ·C) = (4A ·B) : C (also see Appendix) have been

employed. Since δSe is symmetric, the derivative with respect to Se is imposed to be symmetric

by post-multiplying with 4IS. Thus, equation (49) implies

(
∂τ˜
∂ST

e

)α
=
∂τα

∂ST
e

=
∂τα

∂Se
= P α

0 :
(

4IRT ·Ce + 2Se · 4S
)

: 4IS. (51)

Applying eqs. (31), (39), (44), (46), (48) and (51) to specify eq. (29). Then, substituting
eqs. (28) and (29) to (23) finally results in an explicit form of K such that eq. (19) becomes
solvable by following the Newton-Raphson iterative procedure.

5 Material tangent stiffness

After the converged solution of eq. (19) is obtained, one can readily extract the material tangent
stiffness tensor required in Marc/Mentat (the geometrical tangent stiffness tensor is automatic-
ally taken into account), which in hypela2.f is defined by

4K =
∂S

∂E
. (52)

The explicit form of ∂S
∂E is obtained by splitting eq. (52), reading

4K =
∂S

∂FT︸ ︷︷ ︸
5.2

:
∂F

∂E︸︷︷︸
5.1

. (53)

Two intermediate terms ∂S
∂FT and ∂F

∂E can be separately derived in the following.

5.1 Deformation gradient w.r.t strain

∂F
∂E is rewritten as

∂F

∂E
=
∂F

∂U
:
∂U

∂C
:
∂C

∂E
, (54)

with U = R−1 ·F , C = FT ·F and E = 1
2 (C − I). Here U denotes the (symmetric) right stretch

tensor, C the (symmetric) Cauchy-Green deformation tensor, E the (symmetric) Green-Lagrange
strain tensor and R the rotation tensor, which can be regarded as constant during each time step
(more details can be found in [3]).

The variational forms of E = 1
2 (C − I) and F = R ·U can be individually expressed as

δE =
1

2
δC, (55a)

δF = R · δU , (55b)
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5.2 Stress w.r.t deformation gradient

which immediately implies

∂C

∂E
= 24IS, (56a)

∂F

∂U
= R · 4IS. (56b)

Here the relation 4IS : A = A : 4IS = AS has been employed.
∂U
∂C is relatively complicated to identify (detailed procedure can be found in [5]) and here given

by

∂U

∂C
=

3∑
m=1

3∑
n=1

1

λm + λn
~nm~nn~nn~nm, (57)

with U in its spectral form U =
∑3
m=1 λm~nm~nm, where λm denotes the principal strain component

and ~nm the principal basis vector.
Now collecting eqs. (54), (56) and (57) gives

∂F

∂E
=
∂F

∂U
:
∂U

∂C
:
∂C

∂E
, (58)

with

∂F

∂U
= R · 4IS, (59a)

∂U

∂C
=

3∑
m=1

3∑
n=1

1

λm + λn
~nm~nn~nn~nm, (59b)

∂C

∂E
= 24IS. (59c)

5.2 Stress w.r.t deformation gradient

From (5), it can be derived that the relation for the 2nd Piola-Kichhoff stress tensor is expressed
as

S = F−1
p · Se · F−T

p . (60)

As can be seen, S is dependent on both Se and F p. Therefore, the derivative ∂S
∂FT is split as

follows

∂S

∂FT
=

∂S

∂ST
e︸ ︷︷ ︸

5.2.1

:
∂Se

∂FT︸ ︷︷ ︸
5.2.3

+
∂S

∂FT
p︸ ︷︷ ︸

5.2.1

:
∂F p

∂FT︸ ︷︷ ︸
5.2.2

. (61)

The terms will be derived in the following sections.

5.2.1 Variational form of stress

In order to obtain ∂S
∂ST

e
and ∂S

∂FT
p

, the variational form of S is expressed as

δS = δ(F−1
p · Se · F−T

p )

= δF−1
p · Se · F−T

p + F−1
p · δSe · F−T

p + F−1
p · Se · δF−T

p . (62)
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5.2 Stress w.r.t deformation gradient

The derivative ∂S
∂ST

e
can be obtained from the second term as follows

F−1
p · δSe · F−T

p = (F−1
p · 4I

RT · F−1
p ) : δSe, (63)

where the relations 4IRT
: A = AT and 4A : (B ·C) = (4A ·B) : C (also see Appendix) have been

employed. Therefore, it holds that

∂S

∂ST
e

= F−1
p · 4I

RT · F−1
p . (64)

The remaining two terms of eq. (62) are rewritten as follows

δF−1
p ·Se · F−T

p + F−1
p · Se · δF−T

p

= (4IRT · F−1
p · Se) : δF−T

p + (F−1
p · Se · 4I) : δF−T

p

=
(

4IRT · F−1
p · Se + F−1

p · Se · 4I
)

: δF−T
p , (65)

with

δF−T
p = −F−T

p · δFT
p · F

−T
p

= −F−T
p ·

(
4IRT · F−1

p

)
: δF p, (66)

where the relations 4IRT
: A = AT, 4A : (B ·C) = (4A ·B) : C, δI = A · δA−1 + δA ·A−1 = 0

and 4I : A = A : 4I = A (also see Appendix) have been employed. Substitution of eq. (66) into
eq. (65) gives

∂S

∂FT
p

= −
(

4IRT · F−1
p · Se + F−1

p · Se · 4I
)

:
(
F−T

p · 4IRT · F−1
p

)
. (67)

5.2.2 Plastic deformation gradient w.r.t deformation gradient

Based on the chain rule,
∂F p

∂FT can be computed as

∂F p

∂FT
=
∂F p

∂ST
e︸ ︷︷ ︸

5.2.4

:
∂Se

∂FT︸ ︷︷ ︸
5.2.3

. (68)

The individual terms will be derived in the upcoming sections.

5.2.3 Elastic stress w.r.t deformation gradient

In order to relate Se to F , first eq. (42) is substituted in δSe = ∂Se

∂FT
e

: δF e. This results in the

following expression

δSe =
∂Se

∂FT
e

:
(

4G : δF − F e · 4G : δF p

)
=

∂Se

∂FT
e

:

(
4G : δF − F e · 4G :

∂F p

∂Se
: δSe

)
. (69)
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5.2 Stress w.r.t deformation gradient

Recall that 4G = (4IRT · F−T
p ) : 4IRT

was adopted in order to obtain a more compact notation.
Next, rearranging eq. (69) gives(

4IS +
∂Se

∂FT
e

:
(
F e · 4G

)
:
∂F p

∂Se

)
: δSe =

∂Se

∂FT
e

: 4G : δF , (70)

where the relation 4IS : A = A : 4IS = AS has been employed. One can directly identify ∂Se

∂FT from
eq. (70) as

∂Se

∂FT
= 4N−1

1 : 4N2, (71)

with

4N1 = 4IS +
∂Se

∂FT
e

:
(
F e · 4G

)
:
∂F p

∂Se
, (72a)

4N2 =
∂Se

∂FT
e

: 4G. (72b)

The inversion operation of the (left- and right) symmetric 4th-order tensor tensor 4N1 is detailed
in the appendix. Furthermore,

∂Se

∂FT
e

=
∂Se

∂CT
e

:
∂Ce

∂FT
e

(73)

is already known from eq. (46) and eq. (48).

5.2.4 Plastic deformation gradient w.r.t. elastic stress

The derivative
∂F p

∂ST
e

is split using the chain rule as follows

∂F p

∂ST
e

=
∂F p

∂MT︸ ︷︷ ︸
eq. (39)

:
∂M

∂∆γ˜︸ ︷︷ ︸
eq. (31)

∂∆γ˜∂τ˜
∂τ˜
∂ST

e︸ ︷︷ ︸
eq. (51)

. (74)

Derivative ∂∆γ˜∂τ˜ will be derived in the remainder of this section.
Notice that rα(∆γ˜ ) = 0 at the converged state and thereby the variational form of eq. (16) can

be expressed as

δ∆γα = bα(sαδτα − ταδsα), (75)

where the relation sign(τα)|τα| = τα has been employed. Recall that bα is given by

bα =
∆t

2

1

(sα)2

γ̇0

m

(
|τα|
sα

)1/m−1

. (76)

In order to relate ∆γ˜ to τ˜, the chain rule is applied to split δsα in eq. (75) such that

δ∆γα + bατα
Ns∑
β=1

∂sα

∂γβ
δ∆γβ = bαsαδτα, (77)

where ∂sα

∂γβ
is already known from eq. (28). If the derivative is taken with respect to τβ , the

following expression is obtained

∂∆γα

∂τβ
+ bατα

Ns∑
χ=1

∂sα

∂∆γχ
∂∆γχ

∂τβ
= δαβbαsα. (78)
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Note that ∂τα

∂τβ
= δαβ . The matrix notation of eq. (78) is written as

∂∆γ˜∂τ˜
+ T

∂s˜
∂∆γ˜

∂∆γ˜∂τ˜
= H2(

I + T
∂s˜
∂∆γ˜

)
∂∆γ˜∂τ˜

= H2, (79)

with

(I)
αβ

= δαβ (80a)

(T )
αβ

= bαταδαβ (80b)

(H2)
αβ

= δαβbαsα. (80c)

This implies that

∂∆γ˜∂τ˜
= H−1

1 H2, (81)

with

(H1)
αβ

= δαβ + bατα
∂sα

∂∆γβ
. (82)

Eqs. (71) and (68) are substituted in (61). Then, eqs. (58) and (61) are substituted in eq. (53)
finally yield the explicit form of 4K, which is the overall material tangent stiffness matrix.

A Notations

The employed scalars, vectors, (2nd-order) tensors and 4th-order tensors are distinguished as
follows:

• Scalar is denoted by the italic symbol, e.g. a.

• Vector is denoted by the symbol with an arrow above, e.g. ~a. When the Einstein summation
convention is adopted, the vector ~a can also be written in index notation as ai~ei, where ~ei is
the Cartesian vector basis.

• Tensor is denoted by the italic-bold symbol, e.g. A. The tensor A can be written in index
notation as A = Aij~ei~ej .

• 4th-order tensor is denoted by the blackboard-bold symbol with a left superscript “4”, e.g.
4A. The 4th-order ensor 4A can be written in index notation as 4A = Aijkl~ei~ej~ek~el.

B Operations

A series of employed operations are defined in the following:

• Column assembly of quantities is denoted by a tilde below as (•̃).

• Matrix assembly of quantities is denoted by a line below as (•).

• Determinant of a tensor is directly denoted as det(•).

• Inverse of a tensor is denoted using a right superscript “-1” as (•)−1.

• Transpose of a column, matrix, tensor or 4th-order tensor is denoted using a right superscript
“T” as (•)T.

• Left transpose of a 4th-order tensor is denoted using a right superscript “LT” as (•)LT.

13



B.1 Inversion of a 4th-order tensor

• Right transpose of a 4th-order tensor is denoted using a right superscript “RT” as (•)RT.

• Symmetrization of a tensor is denoted using a right superscript “S” as (•)S = 1
2 [(•)+(•)T]. In

particular, the symmetric part of a 4th-order tensor exists and is defined as 4IS = 1
2 (4I+4IRT

).

• Dyadic product is directly denoted as (•)(◦).

• Dot product is denoted by a dot, as (•) · (◦).

• Double dot product is denoted by a double dot, as (•) : (◦).

• Derivative of a tensor w.r.t a tensor is specially defined as ∂(•)
∂(◦)T (NOT ∂(•)

∂(◦) ), which can

be written in index notation as
∂(•)ij
∂(◦)lk~ei~ej~ek~el for convenience to apply the chain rule. For

instance, if B = B(C), we can have

δA =
∂A

∂AT
:
∂B

∂CT
: δC. (83)

The details about the common operations above can be found in [3, 5].

B.1 Inversion of a 4th-order tensor

The inversion operation for a 4th-order order tensor is relatively complicated and most easily done
as follows:

• Convert this tensor to a 9x9 matrix.

• In case of a left (4ALT
= 4A) or right-symmetric (4ART

= 4A) 4th-order tensor, reduce
corresponding 9x9 matrix to a 6x6 matrix.

• Take the inverse of this matrix.

• Convert the resulted matrix back to fourth order tensor notation.

B.2 Expansion and reduction of stiffness matrix

Since the shear component in a strain tensor is half of the engineering shear strain, e.g. ε12 = 1
2γ12,

associated expansion and reduction operations of stiffness matrix may be necessary, depending on
the adopted formulation to implement the constitutive relations. For instance of the expansion
operation:

• A stiffness matrix is specified by
σ11

σ22

σ33

σ12

σ23

σ31

 =



 A

 B

 C

 D






ε11

ε22

ε33

2ε12

2ε23

2ε31

 , (84)

and can then be expanded as

σ11

σ22

σ33

σ12

σ23

σ31

σ21

σ32

σ13


=



 A

 B

 B

 C

 D

 D

 C

 D

 D







ε11

ε22

ε33

ε12

ε23

ε31

ε21

ε32

ε13


(85)

.
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• A compliance matrix is specified by
ε11

ε22

ε33

2ε12

2ε23

2ε31

 =



 P

 Q

 R

 S






σ11

σ22

σ33

σ12

σ23

σ31

 , (86)

and can then be expanded as

ε11

ε22

ε33

ε12

ε23

ε31

ε21

ε32

ε13


=



 P

  Q/2

  Q/2

 R/2

  S/4

  S/4

 R/2

  S/4

  S/4







σ11

σ22

σ33

σ12

σ23

σ31

σ21

σ32

σ13


(87)

The reduction operation is similar.

C Unit tensors and useful relations

The unit tensor and 4th-order unit tensor together with their useful properties are highlighted as
follows:

• Unit tensor I is defined such that I · ~a = ~a · I, which maps a vector ~a to itself and can be
written in index notation as I = Iij = δij . A few useful relations involving I are given as

A ·A−1 = A−1 ·A = I, (88a)

I ·A = A · I = A, (88b)

I : A = A : I = tr(A), (88c)

det(I + δA) ≈ 1 + tr(δA), (88d)

δI = A · δA−1 + δA ·A−1 = 0, (88e)

where tr(•) and det(•) are the trace (or 1st-invariant) and determinant (or 3rd-invariant) of
a tensor, respectively and δ(•) the variation.

• 4th-order unit tensor 4I is defined such that 4I : A = A : 4I = A, which maps a tensor to
itself and can be written in index notation as 4I = Iijkl~ei~ej~ek~el = δilδjk~ei~ej~ek~el. A few useful
relations involving 4I are given as

4IRT
: A = A : 4IRT

= AT, (89a)

4IS : A = A : 4IS = AS. (89b)

Other useful relations include

(A ·B)T = BT ·AT, (90a)

(A ·B)−1 = B−1 ·A−1, (90b)

A : B = AT : BT = B : A = tr(A ·B); (90c)

A : (B ·C) = (A ·B) : C, (90d)
4A : (B ·C) = (4A ·B) : C, (90e)

A ·B + BT ·AT = 24IS : (A ·B), (90f)

tr(A + B) = tr(A) + tr(B), (90g)

det(A ·B) = det(A)det(B). (90h)
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D Definition of the rotation matrix

The rotation tensor rotates is defined as follows

~ec
i = R∗ · ~ei (91)

With

• ~ei the global coordinate system base vectors,

• ~ec
i the crystal coordinate system base vectors.

The components of the rotation matrix R∗ are determined with respect to the global coordinate
system:

R∗ = R∗ij~ei~ej (92)

A vector ~n in terms of the crystal coordinate system can be expressed as

~n = nc
1~e

c
1 + nc

2~e
c
2 + nc

3~e
c
3 and n˜c =

nc
1

nc
2

nc
3

 (93)

The same vector can also be expressed in terms of the global coordinate system:

~n = n1~e1 + n2~e2 + n3~e3 and n˜ =

n1

n2

n3

 (94)

Conversion between the components can be written as

n˜ = R∗n˜c. (95)

Details of the derivation of this relation can be found in [4]. Eq. (95) holds for an arbitrary vector
~n. A similar relation holds for the components of an arbitrary tensor A:

A = R∗AcR∗T (96)

The texture-file which dictates the orientation of each grain should have the following structure.
The first line contains the number of orientations in the file. Each consecutive line starts with an
identification number, followed by the 9 components of the rotation matrix R∗ in the following
order: [R∗11, R

∗
22, R

∗
33, R

∗
12, R

∗
23, R

∗
31, R

∗
21, R

∗
32, R

∗
13].

Note that R∗ is a rotation matrix and should therefore satisfy the following conditions

det (R∗) = 1 (97)

(R∗)
−1

= (R∗)
T

(98)

The rotation matrix is applied in the code for rotating the (non-)Schmid tensor according to
equation (96).

P 0 = R∗P c
0R
∗T (99)
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