Contents

Beaver documentation

Details of the crystal plasticity model and implementation

Wednesday 6 March, 2019

1 Introduction

2 Crystal plasticity model
2.1 Kinematics . . . . . . L e

2.2 Const
2.2.1
2.2.2

3 Numerica

itutive relations . . . . . . . .
Elasticity . . . . . . . e
Plasticity . . . . . . . o e

1 implementation

3.1 Problem definition . . . . . . . ...
3.2 Residual . . . . . . .
3.3 Linearization . . . . . . . . . e

4 System Jacobian matrix
4.1 Slip resistance w.r.t slip increment . . . . . . . . ... ... L.
4.2 Resolved shear stress w.r.t slip increment . . . . . ... ... ... L L.

4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6

Deformation gradient increment w.r.t. slip increment . . . . . . .. ... ..
Plastic deformation gradient w.r.t. deformation gradient increment . . . . .
Elastic deformation gradient w.r.t. plastic deformation gradient . . . . . . .
Elastic strain w.r.t. elastic deformation gradient . . . . .. ... ... ...
Elastic stress w.r.t. elastic strain . . . . . .. ... ... .. 0.
Resolved shear stress w.r.t. elasticstress . . . . . ... .. ... .. ... ..

5 Material tangent stiffness
5.1 Deformation gradient w.r.t strain . . . . . . . ... L oo o

5.2 Stress
5.2.1
5.2.2
5.2.3
5.2.4

A Notations

w.r.t deformation gradient . . . . . ... ..o oo
Variational form of stress . . . . . . . . .. ... o oL
Plastic deformation gradient w.r.t deformation gradient . . . . .. ... ..
Elastic stress w.r.t deformation gradient . . . . . . . ... .. ... .....
Plastic deformation gradient w.r.t. elastic stress . . . .. ... .. .. ...

B Operations

B.1 Invers

ion of a 4th-order tensor . . . . . . . .. ...

B.2 Expansion and reduction of stiffness matrix . . . . .. ... ... ... ...

C Unit tensors and useful relations

D Definition of the rotation matrix

References

N

o o W W N NN

0 00 00~ SO ot

13

13
14
14

15

16

16




1 Introduction

This document describes the crystal plasticity model (see Sec. 2, with more theoretical details
available in [1]), numerical implementation (see Sec. 3, with more technical details available in [2])
and derivation of material tangent stiffness (see Sec. 5), which has all been implemented in the
FORTRAN subroutine Beaver/src/main/hypela2.f for MARC/MENTAT. Necessary definitions for
notations and operations, and a few useful tensorial relations are summarized in the Appendix. In
order to get familiar with the solution procedure and quickly test new features, an implementation
based on MATLAB is provided in Beaver/examples/Matlab_CP/main.m, although this version is
already slightly outdated.

2 Crystal plasticity model

2.1 Kinematics

Based on the microstructural elasto-(visco)plastic description of crystallographic slip, the deform-
ation gradient tensor is multiplicatively split into the elastic and plastic parts (marked by the
subscripts “e” and “p”, respectively), reading

F=F, F,. (1)

Due to the rate-dependency, the velocity gradient tensor L = F . F~! is introduced and
decomposed as
L=L.+F, L, F;! (2)

with the elastic and plastic parts separately defined by L, = F. . Fe_1 and L, = Fp . F;l.
Moreover, L, for the plastic deformation by crystallographic slip is correlated to each initial

slip direction 5§ and slip plane normal 7§, o = 1,2,3, ..., Ny, reading
Ny
L,=) 5P, (3)
a=1

with the (non-symmetric) Schmid tensor in the reference configuration defined by P§ = 3§7g.
Here N denotes the total number of slip systems and 4 the slip rate of slip system a.

2.2 Constitutive relations

With the constitutive relations, the material behaviour of a crystal is described, which consists of
an elastic and a plastic part.

2.2.1 Elasticity

It is assumed that the elastic response of a crystal is relatively small, such that the elastic part of
the response may be described by a linear relation as

S.=14C: E,, (4)
where *C denotes the 4th-order elasticity tensor,

S.=F, S F, (5)
is the (symmetric) elastic 2nd Piola-Kirchhoff stress tensor. Furthermore,

B.=(C.—1) (6)
is the (symmetric) elastic Green-Lagrange strain tensor with

C.=F. F, (7)

the (symmetric) elastic right Cauchy-Green deformation tensor (more details can be found in [3, 4]).




2.2.2 Plasticity

The plastic deformation is governed by the resolved shear stress on each slip system
T¢=8.-C.: Pj. (8)

The visco-plastic relation between shear rate and resolved shear stress on each slip system is
described by a power law, reading

o T #. o
v =0 (I2) 7 sientr), 0

where s is the shear resistance, 4y denotes the reference slip rate, and m the strain-rate sensitivity.
The latter two are (fixed) material parameters. In order to incorporate hardening in the model,
an evolution equation for s® is defined by

N
§ =Y nlP. (10)
B=1

Notice that the slip resistance s* may increase due to hardening of the slip system « itself (self
hardening), as well as due to hardening by other systems § (latent hardening). Many different
choices can be made for the hardening modulus 2%, including

[

hP = hy <1 - 5>a (q+ (1—q)5*"). (11)

Soco

Here hg denotes the reference hardening modulus, s, the extreme shear resistance, ¢ the latent-
hardening ratio, a the shape factor. These are (fixed) material parameters as well. Furthermore,
58 denotes the Kronecker delta. In Beaver, also other slip resistance evolution equations can be
chosen.

3 Numerical implementation

3.1 Problem definition

The total deformation gradient F' is given and known at the beginning of each new time step.
Unless stated differently, all quantities are assumed to be defined at the next (unknown) time step
the1 (so eg. F = F(tyy1)). All other quantities are updated according the equations above.
One may select the assembled slip rate column + as the direct variable to solve by starting from
egs. (3), (1), (4), (8) to (9) and thus a closed-loop chain relation is established, reading

Y= Lp = Lp(}) = Fp = Fp(y) & Fe = Fe(9)
—C. = Ce(A;V) —8Se = Se(j’) - T= I(]) - (12)

which yields a straightforward nonlinear equation r(¥) = 0 to be solved, where r denotes the
residual and should vanish at the balance state. -

Due to the discrete time increment in practice, F', cannot be calculated directly from the slip
rate 4. To solve this issue, L, is often assumed to be constant during an increment from time ¢,
to tnll such that

F,=F,, -Fy(t), (13)
with the increment factor given by

Py, = (det(Fy, ) V2 Fy = Joi Fy (14a)
tnt1 A 1

F,. . =exp (/ Lpdt) =exp(M) =~ (I - 2M) . <I + 2M> , (14b)
t’!l




3.2 Residual

where an alternative variable to L, the deformation gradient increment tensor is defined as
NS
M = AtL, =Y Ay Pj. (15)
a=1

Here Jp,,, is the determinant for correcting the volume deviation from unity and the Padé approx-
imation is employed in eq. (14b) for a small AtL,,.

Clearly, the slip increment of each slip system A~ is introduced as an extra variable above.
In order to approximately correlate Ay® to 4%, many differential formats are possible and a
trapezoidal format is currently selected, reading

Y

AO{
T

(% (tn) +7°) - (16)

Among various simulations with different imposed strain rates, the order of magnitude of the slip
rate 4 may vary a lot. To circumvent the numerical issues related to this observation (complicated
convergence tolerances and numerical accurateness), the choice has been made to take A~y as a
direct variable to solve. At present, a new closed-loop chain relation is formulated, by starting
from egs. (15), (13), (1), (4), (8), (9) to (16), reading

Ay = M = M(Ay) = Fy = Fy(Ay) = Fe = Fe(Ay) = Ce = Co(Ay)
= Se = 8e(Ay) = 7 =1(Ay) = 7 =7(Ay) = Ay, (17)

which implies a nonlinear equation r(Av) = 0 to be solved. Once A~ is computed, other quant-
ities can be updated accordingly as well. The latter solution procedure is implemented in the
MARC/MENTAT subroutines.

3.2 Residual

Column r consists of components r*. Based on the choice of the solution procedure (eq. (17)), the
residual r is defined by substituting eq. (16) in eq. (9) as

]

At 1/m
re = Ay* — 5 ¥ (tn) + Y0 (sf") sign(77) | . (18)

3.3 Linearization

The Newton-Raphson iteration method is adopted to solve 7(Av) = 0, which is linearized as

ri + Ki(Avipr — Avi) =0, (19)

at the iteration step ¢ (omitted in the below), where the system Jacobian matrix K is defined by

or
Ay’

K= (20)

with the elements (K)QB = %.




4 System Jacobian matrix

In order to get the explicit form of eq. (20), the variational form of the residual is considered,
which indicated with the symbol §:

A o 1/m
or® = Ay — {(5 <f’yo ('ZJ) sign(r“))

=AY —b%0 <|T|> sign(7%)
s(X

_ a a 1 a |Ta| a ) a
= JA~* — b (sa5|7' | (Sa)25$ ) sign(7%)
=AY — bY(s¥9TY — T7%55Y), (21)
with
At 1 Ao [\
=20 - (T . 22
2 (s*)2m ( 5% (22)

Here, the relation sign(7%)|7%| = 7% has been employed. Then substituting eq. (21) to (20) and
applying the chain rule imply

or or or Os
K—=—1+22°% [ 9L 9 2
K=1+5 007 " 95007 (23)
with
(D) = 6P (24)
or\“?  oare
oy _ _ _saBpB B
(3I) 9.8 0*b’ s (25)
o\ ore
= _ 2 _ saBpB.B
(ag) 957 0*H TP, (26)

The elements ( 8857)046 and (%)aﬁ are still unknown but can be determined in a straightfor-
ward manner, as will'be shown in the following subsections.

4.1 Slip resistance w.r.t slip increment

Equation (10) is rewritten in the variational and incremental form, reading

Ns
0% = 6As* = Z R sign(A~P)5AAP. (27)
f=1

Equation (27) immediately implies

ds \ " 0s®
— = = Oé,@ 1 B
(3 ﬂ) OA h*Psign(A~"). (28)




4.2 Resolved shear stress w.r.t slip increment

4.2 Resolved shear stress w.r.t slip increment

or )aﬁ as

The closed-loop chain relation given by eq. (17), can be used to split ( 9A7

( or >“ﬁ_ or*  9r* 9S, 9C. OF. OF, oM
Ay ) OAYF 98T T act T OFY T OFY oM™ T oAy
-~ N N N~

4.2.6 425 424 4353 422 4.2.1

(29)

Various intermediate terms will be separately derived (from right to left) using eqs. (15), (13),
(1), (4) and (8). The number indicated below each derivative in eq. (29) refers to the corresponding

section below, in which the derivative will be derived.

4.2.1 Deformation gradient increment w.r.t. slip increment
The variational form of eq. (15) can be expressed as

Ny Ny
oM =6 (Z mapg> = Z PysA~T,

a=1 a=1

which implies

B
OM\® _ OM s
0Ay) ~OAF T 0

(31)

4.2.2 Plastic deformation gradient w.r.t. deformation gradient increment
The variational form of eq. (13) can be expressed as
OFy, = 6Fpinc Fp(tn)
— (4HRT . Fg(tn)) : 4]IRT : 5Fp;nc~

Next, the variational form of eq. (14a) can be expressed as

(SFPinc =4 (Jﬁl/g) Fpinc + Jﬁl/géFPinc

Pinc Pinc

1 _
= §in:11c/3Fpinc 6inuc + injc/S(SFpinc7

with
6y, =det(Fp, +0F,. ) — Jo..
=det (I +6Fy, -F.!)—1)Jy,.
~tr(6F . - Foll ) o

= Jp, F ! i OF

Pinc Pinc?

(32)

(34)

where the relations det(A - B) = det(A)det(B), det(I +dA) ~ 1+ tr(dA) and tr(A-B)=A: B

(also see Appendix) have been employed. Substituting eq. (34) to (33) yields

1 —1/3 -1 —1/3 4
Pinc = 7§innc/ Fpinc Fpinc : 6Fpinc + in;}c/ ]I : 5Fpinc

_J*1/3 <4H—1F F1> :6Fpinc'

SF

~ “Pinc 3 Pinc™ Pinc




4.2 Resolved shear stress w.r.t slip increment

Furthermore, the variational form of eq. (14b) can be expressed as

-1 ~1
1 1 1 1
6Fpmc:6(I—2M> -<I+2M>+<I—2M) -(5(I—|-2M), (36)
with
1
) <I+ 2M) = §6M (37a)
1 1N\
4 I—f =3 I - -OM - I—§M . (37b)
Substituting egs. (14b) and (37) to (36) gives
-1 -1 -1
1 1 1 1 1 1
F, . =- -M I--M AT+ =-M I--M - —0M
P =g (1) (2) (regn) « (rogm)
1 1
-\ I--M I
2 < 2 ) pmc + )
1 1 T RT
=5 (I-5M (PR +1)) T oM, (38)
where the relations 4T : A = AT and %A : (B-C) = (*A-B): C (also see Appendix) have been
employed. Now collecting eqgs. (32), (35) and (38) implies
OF, OF, 0F,, 0F,,
T = =T " 5pT - T (39)
oM oF, (“)Fme oM
with
oF
P (0 F ) T (40a)
oF,,,
OF . —1y3 (ay_ 1 ~1
aFg‘mC pinc/ I- nginc Fpinc ; (40b)
8I’_‘pinc 1 1 - 4 RT T 4 RT
4.2.3 Elastic deformation gradient w.r.t. plastic deformation gradient
The variational form of eq. (1) can be expressed as
SF.=0(F-F.")
=6F-F,'+ F-0F,"
47 RT —Ty . T -1
=" -F,"):0F" +F-0F,
4RT . 4 RT -1 -1
=" -F,"):"I'"" :6F-F-F_, -6F,-F,
RT . RT RT RT
=T F,N) T 6F—F.- (T -F,"):*T" :0F,, (41)
where the relations 4T%" : A = AT YA (B-C)=(*A-B):Cand I = A-§A" ' +3A- A" =0

(also see Appendix) have been employed. The expression is simplified as follows

6F,=*G:0F -~ F,-*G : 6F,, (42)




4.2 Resolved shear stress w.r.t slip increment

with

4 apRT oy | 4pRT
G= ("1 - F ) 4T

(43)

Since F' is prescribed, equation (42) immediately implies

OF,

T
OF]

_ _Fe . 4G. (44)

4.2.4 Elastic strain w.r.t. elastic deformation gradient
The variational form of eq. (7) can be expressed as
6C.=06(Fr - F.)
=0F F,+F!.6F,
= (2" - FY) : §F., (45)

where the relations A - B+ BT - AT = 241° (A-B)and A : (B-C) = (*A- B) : C have been
employed. This implies

oC.

S
=2'1°. FT. 46
OFT e (46)

4.2.5 Elastic stress w.r.t. elastic strain

The variational form of eq. (4) and eq. (6) can be expressed as
Ly
3S. = 5 C:éC., (47)

which directly implies

89S, 1,
90T "2 © (48)

e

4.2.6 Resolved shear stress w.r.t. elastic stress
The variational form of eq. (8) can be expressed as
07 = (0S.-C.+ S. - 6C,) : Pg
=Py :(0S.-C.+ S.-0C,)
- po. <4HRT (CT.58T) +28, - %S - 556)

o (411“ - Ce+28.- 48) 58, (49)




with the 4th-order compliance tensor defined as

4o OBe 10C.
o8T 298T

(50)

Here the relations 4T%" : A = AT and %A : (B-C) = (*A- B): C (also see Appendix) have been
employed. Since §S. is symmetric, the derivative with respect to Se is imposed to be symmetric
by post-multiplying with ar®, Thus, equation (49) implies

or \¢ or“ or® RT S
=) == =——=P2: (T . 25, -4S) 41, 1
(aseT) 55T = 55, = T ( C. + 25, S) (51)

Applying eqgs. (31), (39), (44), (46), (48) and (51) to specify eq. (29). Then, substituting
egs. (28) and (29) to (23) finally results in an explicit form of K such that eq. (19) becomes
solvable by following the Newton-Raphson iterative procedure.

5 Material tangent stiffness
After the converged solution of eq. (19) is obtained, one can readily extract the material tangent

stiffness tensor required in MARC/MENTAT (the geometrical tangent stiffness tensor is automatic-
ally taken into account), which in hypela2.f is defined by

oS
4
K=_—. 52
5E (52)
The explicit form of g—g is obtained by splitting eq. (52), reading
oS OF
4
K=—F:—. 53
OF" " OFE (53)
—— =~
5.2 5.1
Two intermediate terms aaTST and g—g can be separately derived in the following.
5.1 Deformation gradient w.r.t strain
g—g is rewritten as
oF OF 00U oC

OE 09U 0C OE’

withU=R ' F,C=F" - Fand E = 1(C —1I). Here U denotes the (symmetric) right stretch
tensor, C' the (symmetric) Cauchy-Green deformation tensor, E the (symmetric) Green-Lagrange
strain tensor and R the rotation tensor, which can be regarded as constant during each time step
(more details can be found in [3]).

The variational forms of E = %(C —I)and F = R-U can be individually expressed as

SE = %ac, (55a)
§F = R - U, (55b)




5.2 Stress w.r.t deformation gradient

which immediately implies

B =2 ]I (56a)
oF
=R, 56b
T (56b)
Here the relation 4I° : A = A : “I° = AS has been employed.
ou

3 1s relatively comphcated to identify (detailed procedure can be found in [5]) and here given
by

Z Z N +)\ T mnTinTim, (57)

m=1n

with U in its spectral form U = Zm 1 AmTim T, where Ay, denotes the principal strain component
and 7i,,, the principal basis vector.
Now collecting eqgs. (54), (56) and (57) gives

OF _0F U oC (58)
OE 090U  oC  0E’
with

oF 475

U S 1 Lo

D DD ey wi I (59b)
me=1n=1 "M n

oC 4

IE =2 ]I (59c¢)

5.2 Stress w.r.t deformation gradient

From (5), it can be derived that the relation for the 2nd Piola-Kichhoff stress tensor is expressed
as

-1 -T
S=F;' S, F;" (60)

As can be seen, S is dependent on both S, and F,. Therefore, the derivative 88% is split as
follows

0S8 0S8 0S. a8 OF, (61)
OF" 9S8! oF" OF, OF"
S ~——
521 523 5.5.1  5.2.2
The terms will be derived in the following sections.
5.2.1 Variational form of stress
In order to obtain adSST and a%;gm the variational form of S is expressed as
58 =6(F "S- F, ")
=6F,' S - F "+ F,'-0S.-F," +F,'-S.-6F;". (62)

10



5.2 Stress w.r.t deformation gradient

The derivative % can be obtained from the second term as follows

P68 T = (T 68 (63)

where the relations 4T : A = AT and %A : (B-C) = (*A-B): C (also see Appendix) have been
employed. Therefore, it holds that

a8 —1 44RT —1
95T FJUAT FL (64)

The remaining two terms of eq. (62) are rewritten as follows
-1 -T -1 -T
OF,)"Se-F, " +F " -Sc-0F,
(T F, b 80 6F, T+ (F, 1 S - 1) : 6F, "
(‘1 Pyt 8o+ Fy S0 R, (65)

with

=T _ =T T =T
JF," = —F," . 6F - F,

p

_ RT .,
=—F,"- (‘T F;) 0P, (66)
where the relations 41" : A = AT 4A: (B-C)=(*A-B):C,6I = A-A" +A- A" =0
and 1: A = A : *1 = A (also see Appendix) have been employed. Substitution of eq. (66) into
eq. (65) gives

oS

T
OF]

p

== (1P Se+ B S ) s (R RS, (67)

5.2.2 Plastic deformation gradient w.r.t deformation gradient

oF,

Based on the chain rule, 77

can be computed as

OF, OF, 08,

= : : 68
oFT 98T oFT (68)
5.2.4 5.2.3

The individual terms will be derived in the upcoming sections.

5.2.3 Elastic stress w.r.t deformation gradient

In order to relate S, to F', first eq. (42) is substituted in §S, = 35% : 0F,. This results in the

following expression

5582%:(46:51?—1?6-4@:5&)
S, F
—SFT:(“G:éFFC-4G:ZSP:65C>. (69)

11



5.2 Stress w.r.t deformation gradient

Recall that ‘G = (*I"" - F;T) : 41°"

Next, rearranging eq. (69) gives

was adopted in order to obtain a more compact notation.

4G : OF, (70)

M e

(4HS + 8Se . (Fe-4G>

F
OF, ¥ p) 55, = g

98, ) "7 T oFT

where the relation I° : A = A : 4I° = AS has been employed. One can directly identify g 5% from

eq. (70) as

08, -1
oFT = IN; AN, (71)
with
4 475 5Se . 4 an
N, =4 + 7T (F.-*G) 95, (72a)
0S.
N, T 4G, (72b)

The inversion operation of the (left- and right) symmetric 4th-order tensor tensor *N; is detailed
in the appendix. Furthermore,

2S. 9S. oC.
oFT _ oCT  oFT (73)

is already known from eq. (46) and eq. (48).

5.2.4 Plastic deformation gradient w.r.t. elastic stress

The derivative ggf is split using the chain rule as follows

OF, OF, OM 9Ay Or
o8r oMt oAy ot 9sT
——

N—— ——
eq. (39) eq. (31) eq. (51)

Derivative %A} will be derived in the remainder of this section.

Notice that r*(Av) = 0 at the converged state and thereby the variational form of eq. (16) can
be expressed as N

SAYS = b (s¥01 — 7905%), (75)
where the relation sign(7%)|7%| = 7* has been employed. Recall that b® is given by
At 1 . al\ 1/m—1
po = D1 o (I . (76)
2 (s*)2m \ s®

In order to relate A:y to 7, the chain rule is applied to split 6s® in eq. (75) such that
N 9s>
o oo B _ o o
OAY™ + b7 ;:1 57 OANP = bs*o77, (77)

where g%; is already known from eq. (28). If the derivative is taken with respect to 77, the
following expression is obtained

8Arya a_a oL 9s* 8A7X _ safra o
5 F +br;aMX g =007 (78)

12



Note that % = 07, The matrix notation of eq. (78) is written as

0Ay ds 0Ay
or "Lany or e
ds | 0Ay
(17 55;) 5 = o (79)
with
(1) = 509 (308)
(1) = br25°7 (80b)
(H,)™? = §*Pps. (80c)

This implies that

A
929 _ poim,, (81)

or
with

Js®
OANP”

(H,)*? = 6% 4 por> (82)

Egs. (71) and (68) are substituted in (61). Then, egs. (58) and (61) are substituted in eq. (53)
finally yield the explicit form of K, which is the overall material tangent stiffness matrix.

A Notations

The employed scalars, vectors, (2nd-order) tensors and 4th-order tensors are distinguished as
follows:

Scalar is denoted by the italic symbol, e.g. a.

Vector is denoted by the symbol with an arrow above, e.g. @. When the Einstein summation
convention is adopted, the vector @ can also be written in index notation as a;€;, where €; is
the Cartesian vector basis.

Tensor is denoted by the italic-bold symbol, e.g. A. The tensor A can be written in index
notation as A = A;;€é;€;.

4th-order tensor is denoted by the blackboard-bold symbol with a left superscript “4”, e.g.
4A. The 4th-order ensor *A can be written in index notation as A = A;;1,€;€;€)€).

B Operations
A series of employed operations are defined in the following:
e Column assembly of quantities is denoted by a tilde below as (e).
e Matriz assembly of quantities is denoted by a line below as (e).
e Determinant of a tensor is directly denoted as det(e).
1

e Inverse of a tensor is denoted using a right superscript “-1”7 as (e)~1.

e Transpose of a column, matrix, tensor or 4th-order tensor is denoted using a right superscript
“T g9 (.)T'

e Left transpose of a 4th-order tensor is denoted using a right superscript “LT” as (o)UT.

13



B.1

Inversion of a 4th-order tensor

Right transpose of a 4th-order tensor is denoted using a right superscript “RT” as (¢)RT.

Symmetrization of a tensor is denoted using a right superscript “S” as (8)5 = 1[(e)+(e)T]. In

particular, the symmetric part of a 4th-order tensor exists and is defined as ar® = %(4]I+4HRT).
Dyadic product is directly denoted as (e)(o).
Dot product is denoted by a dot, as (e) - (o).

Double dot product is denoted by a double dot, as (e) : (o).

Derivative of a tensor w.r.t a tensor is specially defined as 83(2')% (NOT gg;g), which can
be written in index notation as %e}éje}eﬂl for convenience to apply the chain rule. For
instance, if B = B(C'), we can have

0A 0B

The details about the common operations above can be found in [3, 5].

B.1

Inversion of a 4th-order tensor

The inversion operation for a 4th-order order tensor is relatively complicated and most easily done
as follows:

B.2

Convert this tensor to a 9x9 matrix.

In case of a left (4ALT = 4A) or right-symmetric (4ART = 4A) 4th-order tensor, reduce
corresponding 9x9 matrix to a 6x6 matrix.

Take the inverse of this matrix.

Convert the resulted matrix back to fourth order tensor notation.

Expansion and reduction of stiffness matrix

Since the shear component in a strain tensor is half of the engineering shear strain, e.g. €15 = %’ylg,
associated expansion and reduction operations of stiffness matrix may be necessary, depending on
the adopted formulation to implement the constitutive relations. For instance of the expansion
operation:

A stiffness matrix is specified by

011 €11
09292 A B €922
033 _ L 4L d £33 (84)
o12 2e12
0923 C D 2623
031 2e31

and can then be expanded as

011 €11

0922 A B B €99

033 L 1L 1L | €33

012 €12

o923 | = C D D €23 (85)
031 L 1L 1L i €31

021 €21

g32 C D D €39

1013 | L L 1L 1L 1] Lé13]
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e A compliance matrix is specified by

€11 011

€22 P Q 022

€33 033

2e2| | [ ] o2’ (86)
2523 R S 023
| 2e31 031

and can then be expanded as

€11 011
€22 P Q/2 Q/2 022
€33 L ] _ . _ . 033
€12 012
€923 = R/2 5/4 5/4 0923 (87)
€31 L J L J 031
€21 021
€32 R/2 S/4 S/4 032
€13 ] L L ] L 1] 913}

The reduction operation is similar.

C Unit tensors and useful relations
The unit tensor and 4th-order unit tensor together with their useful properties are highlighted as
follows:

e Unit tensor I is defined such that I -@ = @ - I, which maps a vector @ to itself and can be
written in index notation as I = I;; = §;;. A few useful relations involving I are given as

A-At=A"1.4=1 (88a)
I-A=A-1=A, (88b)
I:A=A:1=tr(A), (88¢)
det(I +5A) =~ 1+tr(6A), (88d)
SI=A-6A""'+5A- A" =0, (88e)

where tr(e) and det(e) are the trace (or lst-invariant) and determinant (or 3rd-invariant) of
a tensor, respectively and §(e) the variation.

o jth-order unit tensor *I is defined such that 1 : A = A : “T = A, which maps a tensor to
itself and can be written in index notation as *I = I;;1,€;€;€xe; = 0;0;,€;€;€,€. A few useful
relations involving *I are given as

ToAa=A" = AT, (89a)
A=A = A5, (89h)
Other useful relations include

(A-B)T=B". A", (90a)
(A-B)y'=B"'.-A"" (90b)
A:B=A":B"=B:A=tr(A-B), (90c)
A:(B-C)=(A-B):C, (90d)
A (B-C)=("A- B) C, (90e)
A-B+B" AT = :(A-B), (90f)
tr(A+ B) =tr(A) + tr(B)7 (90g)
det(A - B) = det(A)det(B). (90h)

[t
ot



D Definition of the rotation matrix
The rotation tensor rotates is defined as follows
o (91)
With
e ¢; the global coordinate system base vectors,
e &7 the crystal coordinate system base vectors.

The components of the rotation matrix R* are determined with respect to the global coordinate
system:

R* = R};¢;¢; (92)
A vector 77 in terms of the crystal coordinate system can be expressed as
ny
T =nje; + nsés +nses  and  n = |n§ (93)
2 ns
The same vector can also be expressed in terms of the global coordinate system:

ni
7 =mn1€1 +Nas +n3é3 and n= |ny (94)
-~ s

Conversion between the components can be written as
n = R*n°. (95)

Details of the derivation of this relation can be found in [4]. Eq. (95) holds for an arbitrary vector
7i. A similar relation holds for the components of an arbitrary tensor A:

A — E*ACE*T (96)

The texture-file which dictates the orientation of each grain should have the following structure.
The first line contains the number of orientations in the file. Each consecutive line starts with an
identification number, followed by the 9 components of the rotation matrix R* in the following
order: [Ryy, B3y, Rys, Ry, Rs, Ry, Ry, Ry, Rig).

Note that R* is a rotation matrix and should therefore satisfy the following conditions
det (R*) =1 (97)
(R~ =(B")" (98)

The rotation matrix is applied in the code for rotating the (non-)Schmid tensor according to
equation (96).

Py =R PR (99)
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